Publications

  • Benzoquinone Cocatalyst Contributions to DAF/Pd(OAc)(2)-Catalyzed Aerobic Allylic Acetoxylation in the Absence and Presence of a Co(salophen) Cocatalyst.
    Caitlin V. Kozak, Stephen J. Tereniak, Jonathan N. Jaworski, Bao Li, David L. Bruns, Spring M. M. Knapp, Clark R. Landis, and Shannon S. Stahl
    ACS Catal. 2021, 11, 6363-6370.
  • Nature of the Active Catalyst in the Hafnium-Pyridyl Amido-Catalyzed Alkene Polymerization.
    Eric S. Cueny, Megan R. Nieszala, Robert D. J. Froese, and Clark R. Landis
    ACS Catal. 2021, 11, 4301-4309.
  • Quantitative Validation of the Living Coordinative Chain Transfer Polymerization of 1-Hexene Using Chromophore Quench Labeling.
    Eric S. Cueny, Lawrence R. Sita, and Clark R. Landis
    Macromolecules 2020, 53, 5816-5825.
  • Comment on “Observation of alkaline earth complexes M(CO)8 (M = Ca, Sr, or Ba) that mimic transition metals”
    Clark R. Landis, Russell P. Hughes, and Frank Weinhold
    Science, 2019365, eaay2355.
  • Experimental and Computational Investigation of the Aerobic Oxidation of a Late Transition Metal-Hydride
    Ashley M. Wright, Dale R. Pahls, J. Brannon Gary, Theresa Warner, Jacob Z. Williams, Spring Melody M. Knapp, Kate E. Allen, Clark R. Landis, Thomas R. Cundari, and Karen I. Goldberg
    J. Am. Chem. Soc. 2019, 141, 10830-10843.
  • Operando Spectroscopic and Kinetic Characterization of Aerobic Allylic C–H Acetoxylation Catalyzed by Pd(OAc)2/4,5-Diazafluoren-9-one
    Jonathan N. Jaworski, Caitlin V. Kozack, Stephen J. Tereniak, Spring Melody M. Knapp, Clark R. Landis, and Shannon S. Stahl
    J. Am. Chem. Soc. 2019, 141, 10462-10474.
  • NBO 7.0: New Vistas in Localized and Delocalized Chemical Bonding Theory.
    Eric D. Glendening, Clark R. Landis, and Frank Weinhold
    J. Comput. Chem. 2019, 40, 2234-2241.
  • The Hafnium-Pyridyl Amido-Catalyzed Copolymerization of Ethene and 1-Octene: How Small Amounts of Ethene Impact Catalysis
    Eric S. Cueny and Clark R. Landis
    ACS. Catal. 2019, 9, 3338-3348.
  • Resonance Theory Reboot
    Eric D. Glendening, Clark R. Landis, and Frank Weinhold
    J. Am. Chem. Soc. 2019, 141, 4156-4166.
  • Development of a Comprehensive Microkinetic Model for Rh(bis(diazaphospholane))-Catalyzed Hydroformylation
    Anna C. Brezny and Clark R. Landis
    ACS Catal. 20199, 2501-2513.
  • Zinc-Mediated Chain Transfer from Hafnium to Aluminum in the Hafnium-Pyridyl Amido-Catalyzed Polymerization of 1-Octene Revealed by Job Plot Analysis
    Eric S. Cueny and Clark R. Landis
    Organometallics 201938, 926-932.
  • Selective Quench-Labeling of the Hafnium-Pyridyl Amido-Catalyzed Polymerization of 1-Octene in the Presence of Trialkyl-Aluminum Chain-Transfer Reagents
    Eric S. Cueny, Heather C. Johnson and Clark R. Landis
    ACS Catal. 20188, 11605-11614.
  • Recent Developments in the Scope, Practicality, and Mechanistic Understanding of Enantioselective Hydroformylation
    Anna C. Brezny and Clark R. Landis
    Acc. Chem. Res. 201851, 2344-2354.
  • a-Tetrasubstituted aldehydes through electronic and strain-controlled branch-selective stereoselective hydroformylation
    Josephine Eshon, Floriana Foarta, Clark R. Landis, and Jennifer M. Schomaker
    J. Org. Chem. 201883, 10207-10220.
  • Multi-State VALBOND for Atomistic Simulations of Hypervalent Molecules, Metal Complexes, and Reactions
    Maurus H. Schmid, Akshaya Kumar Das, Clark R. Landis, and Markus Meuwly
    J. Chem. Theory Comput. 201814, 3565-3578.
  • Chain Transfer with Dialkyl Zinc During Hafnium-Pyridyl Amido-Catalyzed Polymerization of 1-Octene: Relative Rates, Reversibility and Kinetic Models
    Heather C. Johnson, Eric S. Cueny, and Clark R. Landis
    ACS Catal. 20188, 4178-4188.
  • Are Phosphines Viable Ligands for Pd-Catalyzed Aerobic Oxidation Reactions? Contrasting Insights from a Survey of Six Reactions
    Stephen J. Tereniak, Clark R. Landis, and Shannon S. Stahl
    ACS Catal. 20188, 3708-3714.
  • Mechanistic Studies of Hafnium-Pyridyl Amido-Catalyzed 1-Octene Polymerization and Chain Transfer Using Quench-Labeling Methods
    Eric S. Cueny,† Heather C. Johnson,† Bernie J. Anding, and Clark R. Landis
    J. Am. Chem. Soc. 2017139, 11903-11912.
  • Backbone-Modified Bisdiazaphospholanes for Regioselective Rhodium-Catalyzed Hydroformylation of Alkenes
    Julia Wildt, Anna C. Brezny, and Clark R. Landis
    Organometallics 201736, 3142-3151.
  • Regioselective Rh-Catalyzed Hydroformylation of 1,1,3- Trisubstituted Allenes Using BisDiazaPhos Ligand
    Josephine Eshon, Clark R. Landis, and Jennifer Schomaker
    J. Org. Chem. 201782, 9270-9278.
  • Stopped-Flow NMR and Quantitative GPC Reveal Unexpected Complexities for the Mechanism of NHC-Catalyzed Lactide Polymerization
    Anna L. Dunn and Clark R. Landis
    Macromolecules 201750, 2267-2275.
  • Unexpected CO Dependencies, Catalyst Speciation, and Single Turnover Hydrogenolysis Studies of Hydroformylation via High Pressure NMR Spectroscopy
    Anna C. Brezny and Clark R. Landis
    J. Am. Chem. Soc. 2017139, 2778-2785.
  • Progress toward reaction monitoring at variable temperatures: a new stopped-flow NMR probe design
    Anna L. Dunn and Clark R. Landis
    Magn. Reson. Chem. 201755, 329-336.
  • Scalable Synthesis of Enantiopure Bis-3,4-diazaphospholane Ligands for Asymmetric Catalysis
    Bradley R. Jones, M. Leigh Abrams, Clark R. Landis, Scott A. May, Alison N. Campbell, Joseph R. Martinelli, and Joel R. Calvin
    J. Org. Chem. 201681, 11965-11970.
  • Condensation Oligomers with Sequence Control but without Coupling Reagents and Protecting Groups via Asymmetric Hydroformylation and Hydroacyloxylation
    Floriana Foarta and Clark R. Landis
    J. Org. Chem. 201681, 11250-11255.
  • Chromophore Quench-Labeling: An Approach to Quantifying Catalyst Speciation As Demonstrated for (EBI)ZrMe2/B(C6F5)3-Catalyzed Polymerization of 1-Hexene
    D. Luke Nelsen, Bernie J. Anding, Julie L. Sawicki, Matthew D. Christianson, Daniel J. Arriola, and Clark R. Landis
    ACS Catal. 20166, 7398-7408.
  • KetoABNO/NOx Cocatalytic Aerobic Oxidation of Aldehydes to Carboxylic Acids and Access to α-Chiral Carboxylic Acids via Sequential Asymmetric Hydroformylation/Oxidation
    Kelsey C. Miles, M. Leigh Abrams, Clark R. Landis, and Shannon S. Stahl
    Org. Lett. 201618, 3590-3593.
  • Continuous Liquid Vapor Reactions Part 2: Asymmetric Hydroformylation with Rhodium-Bisdiazaphos Catalysts in a Vertical Pipes-in-Series Reactor
    M. Leigh Abrams, Jonas Y. Buser, Joel R. Calvin, Martin D. Johnson, Bradley R. Jones, Gordon Lambertus, Clark R. Landis, Joseph R. Martinelli, Scott A. May, Adam D. McFarland, and James R. Stout
    Org. Process Res. Dev. 201620, 901-910.
  • Continuous Liquid Vapor Reactions Part 1: Design and Characterization of a Reactor for Asymmetric Hydroformylation
    Martin D. Johnson, Scott A. May, Joel R. Calvin, Gordon R. Lambertus, Prashant B. Kokitkar, Clark R. Landis, Bradley R. Jones, M. Leigh Abrams, and James R. Stout
    Org. Process Res. Dev. 201620, 888-900.
  • 18-Electron Rule and the 3c/4e Hyperbonding Saturation Limit
    Clark R. Landis and Frank Weinhold
    J. Comput. Chem. 201637, 237-241.
  • Bonding Analysis of TM(cAAC)2 (TM = Cu, Ag, and Au) and the Importance of Reference State
    Clark R. Landis, Russell P. Hughes, and Frank Reinhold
    Organometallics 201534, 3442-3449.
  • Interception and Characterization of Catalyst Species in Rhodium Bis(diazaphospholane)-Catalyzed Hydroformylation of Octene, Vinyl Acetate, Allyl Cyanide, and 1-Phenyl-1,3-butadiene
    Eleanor R. Nelson, Anna C. Brezny, and Clark R. Landis
    J. Am. Chem. Soc. 2015137, 14208-14219.
  • Donor-Promoted 1,2-Hydrogen Migration from Silicon to a Saturated Ruthenium Center and Access to Silaoxiranyl and Silaiminyl Complexes
    Hsueh-Ju Liu, Clark R. Landis, Christophe Raynaud, Odile Eisenstein, and T. Don Tilley
    J. Am. Chem. Soc. 2015137, 9186-9194.
  • A reactor for high-throughput high-pressure nuclear magnetic resonance spectroscopy
    Nicholas J. Beach, Spring Melody M. Knapp, and Clark R. Landis
    Rev. Sci. Instrum. 201586, 104101.
  • Construction and deconstruction of aldehydes by transfer hydroformylation
    Clark R. Landis
    Science 2015347, 29-30.
  • Asymmetric Hydroformylation of Z-Enamides and Enol Esters with Rhodium-Bisdiazaphos Catalysts
    M. Leigh Abrams, Floriana Foarta, and Clark R. Landis
    J. Am. Chem. Soc. 2014136, 14583-14588.
  • Immobilized Bisdiazaphospholane Catalysts for Asymmetric Hydroformylation
    Tyler T. Adint and Clark R. Landis
    J. Am. Chem. Soc. 2014136, 7943-7953.
  • Very Low Pressure Rh-Catalyzed Hydroformylation of Styrene with (S,S,S-Bisdiazaphos): Regioselectivity Inversion and Mechanistic Insights
    Ian A. Tonks, Robert D. Froese, and Clark R. Landis
    ACS Catal. 20133, 2905-2909.
  • Interception and Characterization of Alkyl and Acyl Complexes in Rhodium-Catalyzed Hydroformylation of Styrene
    Eleanor R. Nelsen and Clark R. Landis
    J. Am. Chem. Soc. 2013135, 9636-9639.
  • NBO 6.0: Natural Bond Orbital Analysis Program
    Eric D. Glendening, Clark R. Landis, and Frank Weinhold
    Journal of Computational Chemistry 201334 , 1429-1437.
  • 3c/4e sigma-Type Long-Bonding: A Novel Transitional Motif toward the Metallic Delocalization Limit
    C. R. Landis and F. Weinhold
    Inorg. Chem. 201352, 5154-5166.
  • Libraries of Bisdiazaphospholanes and Optimization of Rhodium-Catalyzed Enantioselective Hydroformylation
    Tyler T. Adint, Gene W. Wong, and Clark R. Landis
    J. Org. Chem. 201378, 4231-4238.
  • Iterative Asymmetric Hydroformylation/Wittig Olefination Sequence
    Gene W. Wong and Clark R. Landis
    Angew. Chem. Int. Ed. 201352, 1564-1567.
  • Mechanistic Investigations into the Behavior of a Labeled Zirconocene Polymerization Catalyst
    Beth M. Moscato, Bolin Zhu, and Clark R. Landis
    Organometallics 201231, 2097-2107.
  • Synthesis of (2R)-3-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]-2-methylpropanal by Rhodium-Catalyzed Asymmetric Hydroformylation
    Gene W. Wong, Tyler T. Adint, and Clark R. Landis
    Org. Synth. 201289, 243-254.
  • Comments on “Is It Time To Retire the Hybrid Atomic Orbital?”
    C. R. Landis and F. Weinhold
    J. Chem. Educ. 201289, 570–572.
  • Regioselective Rhodium-Catalyzed Hydroformylation of 1,3-Dienes to Highly Enantioenriched beta, gamma-Unsaturated Aldehyes with Diazaphospholane Ligands.
    Avery L. Watkins and Clark R. Landis.
    Org. Lett. 201113, 164–167.
  • Electronic structural comparison of the reactions of dioxygen and alkenes with nitrogen-chelated palladium(0)
    Brian V. Popp, Christine M. Morales, Clark R. Landis, Shannon S. Stahl.
    Inorg. Chem. 201049, 8200-8207.
  • Enantioselective Hydroformylation of N-Vinyl Carboxamides, Allyl Carbamates, and Allyl Ethers Using Chiral Diazaphospholane Ligands.
    Richard I. McDonald, Gene W. Wong, Ram P. Neupane, Shannon S. Stahl, Clark R. Landis.
    J. Am. Chem. Soc. 2010132, 14027-14029.
  • GPC and ESI-MS Analysis of Labeled Poly(1-Hexene): Rapid Determination of Initiated Site Counts during Catalytic Alkene Polymerization Reactions
    Beth M. Moscato; Bolin Zhu, Clark R. Landis.
    J. Am. Chem. Soc. 2010132, 14352-14354.
  • Origin of Pressure Effects on Regioselectivity and Enantioselectivity in the Rhodium-Catalyzed Hydroformylation of Styrene with (S,S,S)-BisDiazaphos.
    Avery L. Watkins and Clark R. Landis.
    J. Am. Chem. Soc. 2010132, 10306-10317.
  • Stopped-Flow NMR: Determining the Kinetics of [rac-(C2H4(1-indenyl)2)ZrMe][MeB(C6F5)3]-Catalyzed Polymerization of 1-Hexene by Direct Observation.
    Matthew D. Christianson, Emily H. P. Tan, Clark R. Landis.
    J. Am. Chem. Soc. 2010132, 11461-11463.
  • Are carbodiimide-quenched polyethylene distributions representative of bulk polymer samples? Analysis of metallocene-catalyzed ethylene polymerization by ESI-MS, MALDI, GPC and NMR.
    Beth Moscato and Clark Landis.
    Chem. Commun. 2008, 5785–5787.
  • Highly Enantioselective Hydroformylation of Aryl Alkenes with Diazaphospholane Ligands.
    Avery L. Watkins, Brian G. Hashiguchi and Clark R. Landis.
    Org. Lett. 200810, 4553–4556.
  • All-Electron Scalar Relativistic Basis Sets for Third-Row Transition Metal Atoms
    Dimitrios A. Pantazis, Xian-Yang Chen, Clark R. Landis and Frank Neese.
    J. Chem. Theory Comput. 20084, 908–919. 
  • Ligands for Practical Rhodium-Catalyzed Asymmetric Hydroformylation
    Jerzy Klosin and Clark R. Landis.
    Acc. Chem. Res. 200740, 1251–1259. 
  • Response to ‘The ABCs of Multiple Bonding’.
    Frank Weinhold and Clark R. Landis.
    Science (Washington, DC, U.S.) 2007318 (5851), 746–748. 
  • The Shortest Metal−Metal Bond Yet: Molecular and Electronic Structure of a Dinuclear Chromium Diazadiene Complex.
    Kevin A. Kreisel, Glenn P. A. Yap, Olga Dmitrenko, Clark R. Landis, and Klaus H. Theopold.
    J. Am. Chem. Soc. 2007129, 14162–14163. 
  • Generalized treatment of NMR spectra for rapid chemical reactions.
    Matthew D. Christianson and Clark R. Landis.
    Concepts Magn. Reson. Part A. 200730A, 165–183. 
  • Asymmetric Hydroformylation of Vinyl Acetate: Application in the Synthesis of Optically Active Isoxazolines and Imidazoles
    P. J. Thomas, Alex T. Axtell, Jerzy Klosin, Wei Peng, Cynthia L. Rand, Thomas P. Clark, Clark R. Landis, and Khalil A. Abboud.
    Org. Lett. 20079, 2665–2668. 
  • High Bond Orders in Metal-Metal Bonding.
    Frank Weinhold and Clark R. Landis.
    Science (Washington, DC, U.S.) 2007316 (5821), 61–63. 
  • Reaction of Molecular Oxygen with an NHC-Coordinated Pd0 Complex: Computational Insights and Experimental Implications.
    Brian V. Popp, Johanna E. Wendlandt, Clark R. Landis, and Shannon S. Stahl.
    Angew. Chem., Int. Ed. 200746, 601-604.
  • Valence and extra-valence orbitals in main group and transition metal bonding.
    C. R. Landis and F. Weinhold.
    J. Comput. Chem. 200728, 198-203. 
  • Metallocene-catalyzed alkene polymerization and the observation of Zr-allyls.
    Clark R. Landis and Matthew D. Christianson.
    Proc. Natl. Acad. Sci. U.S.A. 2006103, 15349–15354. 
  • Computational Studies of Metal-Ligand Bond Enthalpies across the Transition Metal Series.
    Jamal Uddin, Christine M. Morales, James H. Maynard, and Clark R. Landis.
    Organometallics 200625, 5566–5581. 
  • Trigonal pyramids: alternative ground-state structures for sixteen-electron complexes.
    Detlev Ostendorf, Clark Landis, and Hansjörg Grützmacher.
    Angew. Chem., Int. Ed. 200645, 5169–5173. 
  • The Simplest Binary Fluorocarbon as a Ligand. Synthetic, Spectroscopic, Crystallographic, and Computational Studies of a Molybdenum Complex of Terminally Ligated Carbon Monofluoride (Fluoromethylidyne).
    Hui Huang, Russell P. Hughes, Clark R. Landis, and Arnold L. Rheingold.
    J. Am. Chem. Soc. 2006128, 7454–7455. 
  • Origin of Trans-Bent Geometries in Maximally Bonded Transition Metal and Main Group Molecules.
    Clark R. Landis and Frank Weinhold.
    J. Am. Chem. Soc. 2006128, 7335–7345. 
  • Synthesis, Characterization, and Transition-Metal Complexes of 3,4-Diazaphospholanes.
    Clark R. Landis, Ryan C. Nelson, Wiechang Jin, and Amanda C. Bowman.
    Organometallics 200625, 1377–1391. 
  • Highly Active, Regioselective, and Enantioselective Hydroformylation with Rh Catalysts Ligated by Bis-3,4-diazaphospholanes.
    Thomas P. Clark, Clark R. Landis, Susan L. Freed, Jerzy Klosin, and Khalil A. Abboud.
    J. Am. Chem. Soc. 2005127, 5040–5042. 
  • Insights into the Spin-Forbidden Reaction between L2Pd0 and Molecular Oxygen.
    Clark R. Landis, Christine M. Morales, and Shannon S. Stahl.
    J. Am. Chem. Soc. 2004126, 16302–16303. 
  • “Inverse-Electron-Demand” Ligand Substitution: Experimental and Computational Insights into Olefin Exchange at Palladium(0).
    Brian V. Popp, Joseph L. Thorman, Christine M. Morales, Clark R. Landis, and Shannon S. Stahl.
    J. Am. Chem. Soc. 2004126, 14832–14842. 
  • Recent developments in chiral phospholane chemistry.
    Thomas Clark and Clark Landis.
    Tetrahedron: Asymmetry 200415, 2123-2137. 
  • Reactivity of Secondary Metallocene Alkyls and the Question of Dormant Sites in Catalytic Alkene Polymerization.
    Clark R. Landis, Douglass R. Sillars, and Jeanine M. Batterton.
    J. Am. Chem. Soc. 2004126, 8890–8891. 
  • Solid-phase synthesis of chiral 3,4-diazaphospholanes and their application to catalytic asymmetric allylic alkylation.
    Clark R. Landis and Thomas P. Clark.
    Proc. Natl. Acad. Sci. U.S.A. 2004101, 5428–5432. 
  • Resolved Chiral 3,4-Diazaphospholanes and Their Application to Catalytic Asymmetric Allylic Alkylation.
    Thomas P. Clark and Clark R. Landis.
    J. Am. Chem. Soc. 2003125, 11792–11793. 
  • Catalytic propene polymerization: Determination of propagation, termination, and epimerization kinetics by direct NMR observation of the (EBI)Zr(MeB(C6F5)3)propenyl catalyst species.
    Douglass R. Sillars and Clark R. Landis.
    J. Am. Chem. Soc. 2003125, 9894–9895. 
  • A 1,2,4-diazaphospholane complex of rhodium.
    Robert W. Clark, Ilia A. Guzei,* Wiechang C. Jin and Clark R. Landis.
    Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2003C59, m144-m145. 
  • Catalytic enantioselective hydrogenation of alkenes.
    Steven Feldgus and Clark R. Landis.
    Catalysis by Metal Complexes 200225, 107–135.
  • Direct Observation of Insertion Events at rac-(C2H4(1-indenyl)2)Zr(Me)(MeB(C6F5)3)-Polymeryl Intermediates: Distinction between Continuous and Intermittent Propagation Modes.
    Clark R. Landis, Kimberly A. Rosaaen, and Douglass R. Sillars.
    J. Am. Chem. Soc. 2003125, 1710–1711. 
  • Heavy-Atom Kinetic Isotope Effects, Cocatalysts, and the Propagation Transition State for Polymerization of 1-Hexene Using the rac-(C2H4(1-indenyl)2)ZrMe2 Catalyst Precursor.
    Clark R. Landis, Kimberly A. Rosaaen, and Jamal Uddin
    J. Am. Chem. Soc. 2002124, 12062–12063. 
  • Direct observation of the propagating species in the (EBI)Zr(Me)(MeB(C6F5)3)-catalyzed polymerization of 1-hexene.
    Clark R. Landis and Kimberly A. Rosaaen.
    PMSE Preprints 200287, 41–43.
  • Natural bond orbitals and extensions of localized bonding concepts.
    Frank Weinhold and Clark R. Landis.
    Chemistry Education: Research and Practice in Europe 20012, 91–104.
  • Counterion influence on the kinetics of initiation, propagation, and termination for polymerization of 1-hexene as catalyzed by [rac-(C2H4(1-indenyl)2)Zr(Me)]+ cations.
    Clark R. Landis, Zhixian Liu, Curtis B. White.
    Polymer Preprints (American Chemical Society, Division of Polymer Chemistry) 200243, 301–302.
  • Quantum mechanical modeling of alkene hydroformylation as catalyzed by xantphos-Rh complexes.
    Clark R. Landis and Jamal Uddin.
    J. Chem. Soc., Dalton Trans. 2002, 729–742. 
  • A rapid quenched-flow device for the study of homogeneous polymerization kinetics.
    Curtis B. White, Kimberly A. Rosaaen, Clark R. Landis.
    Review of Scientific Instruments 200273 (2, Part 1), 411–415. 
  • Redox behavior of boronato-functionalized 1,1′-bis(diphenylphosphino)ferrocenes.
    Piero Zanello, Arnaldo Cinquantini, Marco Fontani, Marco Giardiello, Gianluca Giorgi, Clark R. Landis, Barbara F. M. Kimmich.
    J. Organomet. Chem. 2001637–639, 800–804. 
  • Valence Bond Concepts Applied to the Molecular Mechanics Description of Molecular Shapes. 4. Transition Metals with p -Bonds.
    Timothy K. Firman and Clark R. Landis.
    J. Am. Chem. Soc. 2001123, 11728–11742. 
  • Kinetics of initiation, propagation, and termination for the [rac-(C2H4(1-indenyl)2)ZrMe][MeB(C6F5)3]-catalyzed polymerization of 1-hexene.
    Zhixian Liu, Ekasith Somsook, Curtis B. White, Kimberly A. Rosaaen, and Clark R. Landis.
    J. Am. Chem. Soc. 2001123, 11193–11207. 
  • Rapid access to diverse arrays of chiral 3,4-diazaphospholanes.
    Clark R. Landis, Wiechang Jin, Jonathan S. Owen, and Thomas P. Clark.
    Angew. Chem., Int. Ed. 200140, 3432–3434.
  • Origin of Enantioreversal in the Rhodium-Catalyzed Asymmetric Hydrogenation of Prochiral Enamides and the Effect of the a-Substituent.
    Steven Feldgus and Clark R. Landis.
    Organometallics 200120, 2374–2386. 
  • A 2H-Labeling Scheme for Active-Site Counts in Metallocene-Catalyzed Alkene Polymerization.
    Zhixian Liu, Ekasith Somsook, and Clark R. Landis.
    J. Am. Chem. Soc. 2001123, 2915–2916. 
  • Large-Scale Computational Modeling of [Rh(DuPHOS)]+-Catalyzed Hydrogenation of Prochiral Enamides: Reaction Pathways and the Origin of Enantioselection.
    Steven Feldgus and Clark R. Landis.
    J. Am. Chem. Soc. 2000122, 12714–12727. 
  • Computational Assessment of the Effect of s -p Bonding Synergy and Reorganization Energies on Experimental Trends in Rhodium-Phosphine Bond Enthalpies.
    Clark R. Landis, Steven Feldgus, Jamal Uddin, Chris E. Wozniak., and Kenneth G. Moloy.
    Organometallics 200019, 4878–4886. 
  • A simple model for the origin of enantioselection and the anti “lock-and-key” motif in asymmetric hydrogenation of enamides as catalyzed by chiral diphosphine complexes of Rh(I).
    Clark R. Landis and Steven Feldgus.
    Angew. Chem., Int. Ed. 200039, 2863–2866.
  • Simple and inexpensive classroom demonstrations of nuclear magnetic resonance and magnetic resonance imaging.
    Joel A. Olson, Karen J. Nordell, Marla A. Chesnik, Clark R. Landis, Arthur B. Ellis, M. S. Rzchowski, S. Michael Condren, George C. Lisensky, and James W. Long.
    J. Chem. Educ. 200077, 882–889. 
  • Synthesis and Characterization of a Chiral, Aza-15-Crown-5-Functionalized Ferrocenyldiphosphine Ligand for Asymmetric Catalysis.
    Clark R. Landis, Rachel A. Sawyer, and Ekasith Somsook.
    Organometallics 200019, 994–1002. 
  • Structures and Reaction Pathways in Rhodium(I)-Catalyzed Hydrogenation of Enamides: A Model DFT Study.
    Clark R. Landis, Peter Hilfenhaus, and Steven Feldgus.
    J. Am. Chem. Soc. 1999121, 8741–8754. 
  • Structure and Electron Counting in Ternary Transition Metal Hydrides.
    Timothy K. Firman and Clark R. Landis
    J. Am. Chem. Soc. 1998120, 12650–12656. 
  • NOE-Derived Solution Structures of a Benzylborato-Azasilazirconacyclobutane Complex, {(Me3Si)2N}Zr(CH2SiMe2NSiMe3){h 6-PhCH2B(C6F5)3}.
    J. Monty Wright, Clark R. Landis, Marianne A. M. P. Ros, and Andrew D. Horton.
    Organometallics 199817, 5031–5040. 
  • Oxidative Addition of Dihydrogen to [Ir(bisphosphine)(1,5-cyclooctadiene)]BF4 Complexes: Kinetic and Thermodynamic Selectivity.
    Barbara F. M. Kimmich, Ekasith Somsook, and Clark R. Landis.
    J. Am. Chem. Soc. 1998120, 10115–10125. 
  • The New Traditions Consortium: shifting from a faculty-centered paradigm to a student-centered paradigm.
    Clark R. Landis, G. Earl Peace Jr., Maureen A. Scharberg, Steven Branz, James N. Spencer, Robert W. Ricci, Susan Arena Zumdahl, and David Shaw.
    J. Chem. Educ. 199875, 714–744. 
  • Probing the nature of H2 activation in catalytic asymmetric hydrogenation.
    Clark R. Landis and Thomas W. Brauch.
    Inorg. Chim. Acta 1998270(1,2), 285–297. 
  • Valence Bond Concepts Applied to the Molecular Mechanics Description of Molecular Shapes. 3. Applications to Transition Metal Alkyls and Hydrides.
    Clark R. Landis, Thomas Cleveland, and Timothy K. Firman
    J. Am. Chem. Soc. 1998120 (11), 2641–2649. 
  • A Valence Bond Perspective on the Molecular Shapes of Simple Metal Alkyls and Hydrides.
    Clark R. Landis, Timothy K. Firman, Daniel M. Root, and Thomas Cleveland.
    J. Am. Chem. Soc. 1998120, 1842–1854. 
  • Formation and Spectroscopic Characterization of Chelated d0 Yttrium(III)-Alkyl-Alkene Complexes.
    Charles P. Casey, Susan L. Hallenbeck, J. Monty Wright, and Clark R. Landis.
    J. Am. Chem. Soc. 1997119, 9680–9690. 
  • Steric Effects on Dinitrogen Cleavage by Three-Coordinate Molybdenum(III) Complexes: A Molecular Mechanics Study.
    Jutta Hahn, Clark R. Landis, Vladimir A. Nasluzov, Konstantin M. Neyman, and Notker Rösch.
    Inorg. Chem. 199736, 3947–3951. 
  • Density Functional Study of N2 Activation by Mo(III) Complexes. Unusually Strong Relativistic Effects in 4d Metal Compounds.
    Konstantin M. Neyman, Vladimir A. Nasluzov, Jutta Hahn, Clark R. Landis, and Notker Rösch
    Organometallics 199716, 995–1000. 
  • Synthesis and Characterization of Boron-Containing Ferrocenyl Ligands for Asymmetric Catalysis.
    Barbara F. M. Kimmich, Clark R. Landis, and Douglas R. Powell
    Organometallics 199615, 4141–4146. 
  • Valence Bond Concepts Applied to the Molecular Mechanics Description of Molecular Shapes. 2. Applications to Hypervalent Molecules of the P-Block.
    Thomas Cleveland and Clark R. Landis.
    J. Am. Chem. Soc. 1996118, 6020–6030. 
  • Structure of W(CH3)6.
    Clark R. Landis, Thomas Cleveland, and Timothy K. Firman.
    Science (Washington, DC, U.S.) 1996272 (5259), 182. 
  • Synthesis and Characterization of Novel Ligands Designed for Secondary Interactions.
    Darren K. MacFarland and Clark R. Landis.
    Organometallics 199615, 483–485. 
  • Molecular mechanics force fields for modeling inorganic and organometallic compounds.
    Clark R. Landis, Daniel M. Root, Thomas Cleveland.
    Reviews in Computational Chemistry 19956, 73-148.
  • Multiconformational analysis of solution NOE data for the Ac-(L)proline-(D)alanine-NHMe dipeptide in a nonprotic solvent.
    Clark R. Landis, Linda L. Luck, J. Monty Wright.
    J. Magn. Reson. Ser. B, 1995109, 44-59. 
  • Synthesis and Spectroscopic Characterization of the d0 Transition Metal-Alkyl-Alkene Complex Cp*2YCH2CH2C(CH3)2CH:CH2.
    Charles P. Casey, Susan L. Hallenbeck, David W. Pollock, Clark R. Landis
    J. Am. Chem. Soc. 1995117, 9770–9771. 
  • Structures of M(allyl)4 (M = Mo, W, Zr).
    Clark Landis, Thomas Cleveland, and Charles P. Casey.
    Inorg. Chem. 199534, 1285–1287. 
  • Making Sense of the Shapes of Simple Metal Hydrides.
    Clark R. Landis, Thomas Cleveland, and Timothy K. Firman.
    J. Am. Chem. Soc. 1995117, 1859–1860. 
  • Molecular mechanics and NOE investigations of the solution structures of intermediates in the [rhodium(chiral bisphosphine)]+-catalyzed hydrogenation of prochiral enamides.
    Janet S. Giovannetti, Christine M. Kelly, and Clark R. Landis.
    J. Am. Chem. Soc. 1993115, 4040–4057. 
  • Valence bond concepts applied to the molecular mechanics description of molecular shapes. 1. Application to nonhypervalent molecules of the P-block.
    Daniel M. Root, Clark R. Landis, and Thomas Cleveland.
    J. Am. Chem. Soc. 1993115, 4201–4209. 
  • Molecular mechanics force fields for linear metallocenes.
    Thompson N. Doman, Clark R. Landis, and B. Bosnich.
    J. Am. Chem. Soc. 1992114, 7264–7272. 
  • Reactions of amides with zerovalent and divalent palladium and platinum complexes.
    David R. Schaad and Clark R. Landis.
    Organometallics 199211, 2024–2029. 
  • Aprotic, viscous solvent mixtures for obtaining large, negative NOE enhancements in small inorganic and organic molecules: ideal solvent systems for deducing structures by NMR techniques.
    Linda A. Luck and Clark R. Landis.
    Organometallics 199211, 1003–1005. 
  • Elucidation of solution structures by conformer population analysis of NOE data.
    Clark Landis and Viyola S. Allured.
    J. Am. Chem. Soc. 1991113, 9493–9499. 
  • SHAPES empirical force field: new treatment of angular potentials and its application to square-planar transition-metal complexes.
    Viloya S. Allured, Christine M. Kelly, Clark R. Landis
    J. Am. Chem. Soc. 1991113, 1–12. 
  • Catalyst-substrate adducts in asymmetric catalytic hydrogenation. Crystal and molecular structure of rhodium [((R,R)-1,2-bis{phenyl-o-anisoylphosphino}ethane)(methyl (Z)-b -propyl-a -acetamidoacrylate)] tetrafluoroborate [Rh(DIPAMP)(MPAA)]BF4.
    Beth McCulloch, Jack Halpern, Michael R. Thompson, and Clark R. Landis.
    Organometallics 19909, 1392–1395. 
  • Activation of amide nitrogen-hydrogen bonds by iron and ruthenium phosphine complexes.
    David R. Schaad and Clark R. Landis.
    J. Am. Chem. Soc. 1990112, 1628–1629. 

Kinetics of the disproportionation of complexes of di-m -oxo-bis[oxomolybdate(V)] in the presence of cyanide ion.
Paul R. Robinson and Clark R. Landis.
Inorg. Chim. Acta 197933 (1), 63-7.